Relationship between Modelling Accuracy and Inflection Point Attributes of Several Equations while Modelling Stand Diameter Distributions
نویسندگان
چکیده
In this study, seven popular equations, including 3-parameter Weibull, 2-parameter Weibull, Gompertz, Logistic, Mitscherlich, Korf and R distribution, were used to model stand diameter distributions for exploring the relationship between the equations' inflection point attributes and model accuracy. A database comprised of 146 diameter frequency distributions of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations was used to demonstrate model fitting and comparison. Results showed that the inflection points of the stand diameter cumulative percentage distribution ranged from 0.4 to 0.6, showing a 1/2 close rule. The equation's inflection point attribute was strongly related to its model accuracy. Equation with an inflection point showed much higher accuracy than that without an inflection point. The larger the effective inflection point interval of the fitting curve of the equation was, and the closer the inflection point was to 0.5 for the equations with fixed inflection points, the higher the equation's accuracy was. It could be found that the equation's inflection point had close relationship with skewness of diameter distribution and stand age, stand density, which provided a scientific basis for model selection of a stand diameter distribution for Chinese fir plantations and other tree species.
منابع مشابه
Stand Diameter Distribution Modelling and Prediction Based on Richards Function
The objective of this study was to introduce application of the Richards equation on modelling and prediction of stand diameter distribution. The long-term repeated measurement data sets, consisted of 309 diameter frequency distributions from Chinese fir (Cunninghamia lanceolata) plantations in the southern China, were used. Also, 150 stands were used as fitting data, the other 159 stands were ...
متن کاملDevelopment of a stem taper equation and modelling the effect of stand density on taper for Chinese fir plantations in Southern China.
Chinese fir (Cunninghamia lanceolata) is the most important commercial tree species in southern China. The objective of this study was to develop a variable taper equation for Chinese fir, and to quantify the effects of stand planting density on stem taper in Chinese fir. Five equations were fitted or evaluated using the diameter-height data from 293 Chinese fir trees sampled from stands with f...
متن کاملA Stand-Class Growth and Yield Model for Mexico’s Northern Temperate, Mixed and Multiaged Forests
The aim of this research was to develop a stand-class growth and yield model based on the diameter growth dynamics of Pinus spp. and Quercus spp. of Mexico’s mixed temperate forests. Using a total of 2663 temporary, circular-sampling plots of 1000 m2 each, nine Weibull distribution techniques of parameter estimation were fitted to the diameter structures of pines and oaks. Statistical equations...
متن کاملA Robust Feedforward Active Noise Control System with a Variable Step-Size FxLMS Algorithm: Designing a New Online Secondary Path Modelling Method
Several approaches have been introduced in literature for active noise control (ANC)systems. Since Filtered-x-Least Mean Square (FxLMS) algorithm appears to be the best choice as acontroller filter. Researchers tend to improve performance of ANC systems by enhancing andmodifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANCapplications an online secondary pat...
متن کاملApplication of New Inflection Point Method for Hydrodynamics Study in Slurry Bubble Column Reactors
Bubble column reactors are used in a wide variety of applications such as multiphase bioreactors, catalytic slurry reactors, and absorption processes. The superficial gas velocity-gas holdup relationship and transition point are two important parameters for characterizing the hydrodynamics of a bubble column reactor. In this study, systematic investigation of a nitrogen - water - glass bead...
متن کامل